China OEM Hydraulic Cydinder Long Stroke Mini Small Lifting Double Single Acting Piston Cylinder vacuum pump belt

Product Description

Product Description

Model NO. Certificate Application Power
ZYG12301657100 ISO9001,CE, EAC Machine Hydraulic
Structure MOQ Color Place of Origin
Piston Type 1PCS Customer Requirement HangZhou, China
Material Port Size Texture Brand Name
Carbon Steel Customer Requirement 20#/45# Steel zhongye
Product Name Working Pressure Package Package Type
Factory Design Mining Machinery Welded Hydraulic C 6.7-34.3 MPa Customer Requirement Wooden Cases and Pallets
Standard or Nonstandard Specification Warranty Transport Package
Nonstandard customization 12 Months Customization

 

Company Profile

ZheJiang Zhongye Electromechanical Technology Co., LTD. (hereinafter referred to as: Zhongye Electromechanical) is located in HangZhou High-tech International Enterprise Port Building 19, Liandong U Valley, High-tech Zone, HangZhou , ZheJiang Province, China.with a total investment of over 300 million yuan. Specializing in hydraulic piston pump, hydraulic valve, hydraulic motor, hydraulic cylinder and other hydraulic components research and development and remanufacturing. 

The founder, Mr. Min Yuchun, has been engaged in the hydraulic industry for 36 years, and has a profound cultural background and understanding of the hydraulic field. He has successively established HangZhou CHINAMFG Excavator Co., LTD., ZheJiang CHINAMFG Fluid Transmission Co., LTD. In order to expand the operation and increase the export trade business, he introduced 2 directors with foreign investment experience to set up ZheJiang Zhongye Electromechanical Technology Co., LTD.
At present, zhongye Electromechanical has close cooperation and exchanges with the leading universities in the field of fluid transmission in China, such as HangZhou Institute of Technology, and ZHangZhoug University, and has jointly established the “Fluid Transmission and Control Industry-University-Research Center” with HangZhou Institute of Technology, transforming scientific research theories into practical results. Determined to make the core characteristic service, and to do well, bigger, stronger, promote the common progress of the industry, drive the development of China’s hydraulic industry, to the world’s leading fluid transmission and control system.

Our Advantages

 

  1. We have a factory that produce pumps of KPM K3V/K5V/K7V series, The quality can be up to the same quality as the CHINAMFG , but the price is far below them. It has good cost performance because our boss has been in the hydraulic industry for 36 years, he is specializing in this technical research and is seriously at quality. If you have a market there, it will be a great advantage.
  2. In addition, we can also providing a variety of hydraulic parts for import brands. Some are we buy from CHINAMFG & CHINAMFG etc (china construction manufacturers )when they want to update the machine, but they has order the pumps motors…and the products will cause waste before they can be used, and we will buy from them that is why we can supply .
  3. Packaging: Adopt a variety of packaging and multiple protection to ensure the integrity of products.
  4. Double plastic bags: the inner layer is rust and oil proof, and the outer layer is double protection to prevent rain from affecting the external packaging and then affecting the product
  5. High elastic foam paper: secure and provide close protection to the product
  6. Wooden case: prevent direct impact on products during transportation
  7. Logistics: The company is equipped with logistics department and freight drivers to ensure the safety and timely delivery of goods to the designated place/warehouse/port.
  8. Certificates: CE and EAC (Russian customs union )
  9. Our factory is closed to ZheJiang port & HangZhou port.

Installation Instructions

 

1. oil purity In order to ensure the service life of the hydraulic cylinder, the hydraulic system must be set up in the filter, effectively prevent pollution, the purity of the oil should meet the ISO4406 standards, the quality of the filter should also meet the corresponding ISO standards. The actual condition of the filter shall be performed according to the system classification standard, but not lower than the minimum 19/15 rating of ISO4406, that is, the 24/15715 (beta) rating of ISO4572.
2. Hydraulic cylinder When the hydraulic cylinder needs to be stored for a period of time, the following methods are recommended: The hydraulic cylinder should be stored in a dry, clean, non-corrosive gas indoor environment, pay attention to protect the hydraulic cylinder from internal and external corrosion damage. The hydraulic cylinder should be as vertical as possible, and the piston rod upward, so that the hydraulic cylinder in the possibility of condensation caused by corrosion, and permanent deformation of the seal resulting in the weight of the piston and piston rod to a minimum. Hold oil port guard until connecting wire. Long-term storage, should be in the hydraulic cylinder piston on both sides of the filling application, to prevent corrosion in the cylinder. If the hydraulic cylinder is placed outside for a period of time, the unpainted surface such as the end of the piston rod should be protected.
3. One side under the protective cover of the hydraulic cylinder oil port can only be selected on the connecting line to prevent sundry entry. The connecting line must be cleaned and connected in series. The hydraulic system must be equipped with oil filter and tested regularly. In the case of a large number of fibers, fast drying chemicals adhesion, high temperature and splashing of impurities, the hydraulic cylinder must be unprotected. The piston rod should be fully tightened with load and checked regularly to prevent the connection thread from loosening; Irregular check guide rod end seal bushing and piston rod rotation deviation. The hydraulic cylinder must ensure the attachment of the piston rod and the connecting rod end, when the piston rod out and back in a straight line, otherwise it will lead to excessive wear of the gland and the cylinder, thus shortening the service life of the hydraulic cylinder. Different considerations for hydraulic cylinder installation During installation, it is recommended to choose thrust keys or thrust structures to resist the shear stress of the connection bolts. Rod mounting and extension lengths can be customized, and the installation torque is the same as the rod torque

Detailed Photos

 

Other Products

 

 

Certification: CE, ISO9001, Eac
Pressure: High Pressure
Work Temperature: Normal Temperature
Voltage: 24V
Material: Carbon Steel
Shipment: Air/Sea/Express
Customization:
Available

|

hydraulic cylinder

Can hydraulic cylinders be integrated with advanced control systems and automation?

Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here’s a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:

1. Electronic Control:

– Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.

2. Closed-Loop Control:

– Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.

3. Proportional and Servo Control:

– Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.

4. Human-Machine Interface (HMI):

– Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.

5. Communication and Networking:

– Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.

6. Automation and Sequential Control:

– By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.

7. Predictive Maintenance and Condition Monitoring:

– Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.

In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.

hydraulic cylinder

Utilizing Hydraulic Cylinders in Conjunction with Alternative Energy Sources

Hydraulic cylinders can indeed be used in conjunction with alternative energy sources. The versatile nature of hydraulic systems allows them to be integrated with various alternative energy technologies to enhance efficiency, control, and power generation. Let’s explore some examples of how hydraulic cylinders can be utilized alongside alternative energy sources:

  1. Hydraulic Energy Storage: Hydraulic cylinders can be employed in energy storage systems that utilize alternative energy sources such as renewable sources (e.g., solar or wind) or waste energy recovery. These systems convert excess energy into hydraulic potential energy by pumping fluid into a high-pressure accumulator. When the energy is needed, the pressurized fluid is released, driving the hydraulic cylinder and generating mechanical power.
  2. Wave and Tidal Energy Conversion: Hydraulic cylinders can be utilized in wave and tidal energy conversion systems. These systems harness the power of ocean waves or tidal currents and convert it into usable energy. Hydraulic cylinders, along with associated pumps and valves, can be used to capture and control the energy from the waves or tides, driving the cylinders and generating mechanical power or producing electricity.
  3. Hydroelectric Power Generation: Hydraulic cylinders play a crucial role in traditional hydroelectric power generation. However, alternative approaches such as small-scale or micro-hydropower systems can also benefit from hydraulic cylinders. These systems utilize natural or man-made water flows to drive turbines connected to hydraulic cylinders, which then convert the hydraulic energy into mechanical power or electricity.
  4. Hydraulic Actuation in Wind Turbines: Hydraulic cylinders can be employed in wind turbines to enhance performance and control. For example, hydraulic pitch control systems use hydraulic cylinders to adjust the pitch angle of wind turbine blades, optimizing their aerodynamic performance based on wind conditions. This allows for efficient power generation and protection against excessive wind loads.
  5. Geothermal Energy Extraction: Geothermal energy extraction involves utilizing the natural heat from the Earth’s interior to generate power. Hydraulic cylinders can be utilized in geothermal systems to control and regulate fluid flow, allowing for efficient extraction and utilization of geothermal energy. They can also be used in geothermal heat pumps for heating and cooling applications.

In summary, hydraulic cylinders can be effectively utilized in conjunction with alternative energy sources to enhance energy storage, power generation, and control. Whether it’s through hydraulic energy storage systems, wave and tidal energy conversion, hydroelectric power generation, hydraulic actuation in wind turbines, or geothermal energy extraction, hydraulic cylinders offer versatile and efficient solutions for harnessing and utilizing alternative energy sources.

hydraulic cylinder

What maintenance practices are essential for extending the lifespan of hydraulic cylinders?

Maintaining hydraulic cylinders is crucial for extending their lifespan and ensuring optimal performance. Regular maintenance helps prevent premature wear, damage, and failure, ultimately reducing downtime and saving costs. Here are some essential maintenance practices to consider for extending the lifespan of hydraulic cylinders:

1. Regular Inspections:

– Conduct routine visual inspections of hydraulic cylinders to identify any signs of damage, leaks, or wear. Inspect the cylinder body, piston rod, seals, and mounting points. Look for fluid leaks, rust, dents, or any abnormal wear patterns. Early detection of issues allows for timely repairs or replacements, preventing further damage and extending the lifespan of the cylinder.

2. Cleanliness:

– Maintain a clean environment around hydraulic cylinders to prevent contaminants from entering the system. Dust, dirt, and debris can damage seals and other internal components, leading to accelerated wear and reduced performance. Regularly clean the cylinder and its surroundings to minimize the risk of contamination.

3. Proper Lubrication:

– Adequate lubrication is critical for the smooth operation and longevity of hydraulic cylinders. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant. Apply lubrication to the cylinder’s moving parts, such as the piston rod, to reduce friction and minimize wear.

4. Seal Maintenance:

– Seals play a vital role in preventing hydraulic fluid leaks and maintaining the cylinder’s performance. Inspect and replace worn or damaged seals promptly. Ensure that seals are properly installed and lubricated. Regularly clean the seal grooves to remove any debris that could compromise seal effectiveness.

5. Pressure Checks:

– Periodically check the hydraulic system’s pressure to ensure it is within the recommended operating range. Excessive pressure can strain the cylinder and its components, leading to premature wear. Monitor pressure levels and make adjustments as necessary to prevent overloading the cylinder.

6. Control Valve Maintenance:

– Maintain and inspect control valves that regulate the flow and direction of hydraulic fluid. Ensure that the valves are functioning correctly and not causing excessive stress or pressure spikes in the cylinder. Clean or replace control valves if they are damaged or malfunctioning.

7. Cylinder Alignment:

– Proper alignment of hydraulic cylinders is essential for their longevity. Misalignment can cause excessive side loads, leading to uneven wear and potential damage. Ensure that the cylinder is correctly aligned with other components and that the mounting points are secure.

8. Preventing Overloading:

– Avoid subjecting hydraulic cylinders to loads exceeding their rated capacity. Overloading can cause internal damage, seal failure, and reduced lifespan. Ensure that the load requirements are within the cylinder’s capabilities and consider using safety devices like overload protection systems when necessary.

9. Training and Operator Awareness:

– Provide proper training to equipment operators on the correct use and handling of hydraulic cylinders. Operators should be aware of the cylinder’s limitations, safe operating procedures, and the importance of regular maintenance. Promote a culture of proactive maintenance and encourage operators to report any potential issues promptly.

10. Documentation and Record-Keeping:

– Maintain detailed documentation of all maintenance activities, including inspections, repairs, and replacements. Keep records of lubrication schedules, pressure checks, and any maintenance performed on the hydraulic cylinders. This documentation helps track the cylinder’s history, identify recurring issues, and plan future maintenance effectively.

By following these maintenance practices, hydraulic cylinder lifespan can be extended, ensuring reliable performance and reducing the risk of unexpected failures. Regular inspections, cleanliness, proper lubrication, seal maintenance, pressure checks, control valve maintenance, cylinder alignment, preventing overloading, operator training, and documentation contribute to the overall longevity and optimal functioning of hydraulic cylinders.

China OEM Hydraulic Cydinder Long Stroke Mini Small Lifting Double Single Acting Piston Cylinder   vacuum pump belt	China OEM Hydraulic Cydinder Long Stroke Mini Small Lifting Double Single Acting Piston Cylinder   vacuum pump belt
editor by CX 2023-10-16

Single Acting Cylinder

As one of the single acting cylinder manufacturers, suppliers, and exporters of mechanical products, We offer single acting cylinders and many others.

Please get in touch with us for details.

Manufacturer supplier and exporter of single acting cylinders.

Recent Posts

Recent Comments